If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2+24m+7=0
a = 6; b = 24; c = +7;
Δ = b2-4ac
Δ = 242-4·6·7
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{102}}{2*6}=\frac{-24-2\sqrt{102}}{12} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{102}}{2*6}=\frac{-24+2\sqrt{102}}{12} $
| 9b-32=76 | | -20+7x=43 | | 15=7-9t | | 15=7+t9 | | 6+a=18 | | 8x+11-11=180 | | (5/6y+1=-1/2y+1/12 | | 10=-12+2x | | 19=-12+2x | | 12x^2-11x-20=0 | | y=8(.85)^3 | | 2x+17=135 | | 5x+6=2x+45+60 | | 20/2x-6=x+6/36 | | 6(x-1)-4+11=x-1+x | | 2w^2-2w-6=0 | | 2(w^2-w-3)=0 | | 36+n+50=180. | | y=575(.4)^3 | | 44=3x+17 | | 60+118+60+x=360. | | 8x=-60 | | 2(x-3)+7-3x=11 | | 5-4m=9 | | 8x-(6x=3)=3x-15 | | w(2w+1)=((2w+1)+w)+5 | | 2x-141+7x=48 | | -9x+6=7x-4 | | 6x-9=6x-8-1 | | 4(y-7)=32 | | 13-4y=3-2y | | 4x3(3x-1)+12=15(x+9) |